Recommendation Algorithms

a study on how Netflix’s recommender system works, and it is described

Authors

DOI:

https://doi.org/10.22475/rebeca.v12n2.898

Keywords:

Recommender Systems, Data, Streaming Platform, Algorithms

Abstract

The audiovisual productions watched by each user on Netflix – a streaming platform - are based, in part, on data collection, computing, and archiving about how and what was previously consumed by each user and by others. Suggestions for new content are made by recommendation systems and operated by a set of algorithms, which are often kept in commercial secret. Netflix, on its website, proposes a “high-level description” of its recommendation system “in layman's language.” This article analyzes how this text explains the functioning of these tools, articulating it with authors who were already part of the group of platform’s developers, other critics, and specialists in algorithms. The analysis demonstrated that from the collection of little user data, especially if compared with the quantity of data usually extracted from social networking sites, it is possible to implement the recommendation system in an elaborated and customized way. The collected data behave as an inclusion pattern and constitute the raw material of a database that feeds the system, creating a complex personalized profile for each user. This profile is what recommends new titles in the search system and mainly guides the item’s position in the ranks in the initial interface. Finally, the position of the title in the interface and the row in which it is displayed significantly influence the choice of production. This, in turn, has consequences in the user’s contact with the diversity of audiovisual productions, the maintenance of the subscription, and the consumption experience on the platform.

Downloads

Download data is not yet available.

Author Biographies

Tiago Franklin Rodrigues Lucena, Universidade Estadual de Maringá

Ph.D. in Arts from the Universidade de Brasília (UnB). Associate Professor in the Communication and Multimedia Course at the Universidade Estadual de Maringá (UEM) and in the Communication Master's program at the State University of Londrina (UEL). Maringá (PR). Brazil

Eduarda Carretero Garcia, Universidade Estadual de Maringá

Bachelor of Communication and Multimedia from the Universidade Estadual de Maringá (UEM), Maringá (PR), Brazil. Was a PIBIC/CNPq scholarship recipient.

Mariana Maronezzi Brezovsky , Universidade Estadual de Maringá

Undergraduate student in the Mathematics program at the Universidade Estadual de Maringá. Participated in Scientific Initiation as a PIC/UEM student. Maringá (PR).

Thiago Fanelli Ferraiol, Universidade Estadual de Maringá

Ph.D. in Mathematics from the Universidade Estadual de Campinas (UNICAMP). Associate Professor at the Universidade Estadual de Maringá (UEM). Maringá (PR). Brazil.

References

AGGARWAL, C. C. Recommender Systems. Cham: Springer International Publishing, 2016.

ALEXANDER, N. Catered to your Future Self: Netflix’s “Predictive Personalization” and the Mathematization of Taste. In: SMITH-ROWSEY, D.; MCDONALD, K. (Org.). The Netflix Effect: Technology and Entertainment in the 21st Century. London: Bloomsbury Academic Publishing, 2016. p. 81-100.

ALVINO, C.; BASILICO, J. Learning a Personalized Homepage. Netflix TechBlog, 9 abr. 2015. Disponível em: https://netflixtechblog.com/learning-a-personalized-homepage-aa8ec670359a. Acesso em: 10 mai. 2022.

BEER, D. Algorithms: Shaping Tastes and Manipulating the Circulations of Popular Culture. Popular Culture and New Media, p. 63-100, 2013.

BRAGHINI, K.; MONTAÑO LA CRUZ, S. E. Software, dado e algoritmo como formas culturais na Netflix. Intexto, n. 44, p. 161-183, 1 jan. 2019. Disponível em: https://seer.ufrgs.br/intexto/article/view/77671. Acesso em: 10 fev. 2022.

BRASIL. Lei no 13.709/2018 (Lei Geral de Proteção de Dados Pessoais). Brasília, DF: Presidência da República. Disponível em: https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/l13709.htm. Acesso em: 1 fev. 2022.

BURROUGHS, B. House of Netflix: Streaming media and digital lore. Popular Communication, v. 17, n. 1, p. 1-17, 2 jan. 2019. Disponível em: https://www.tandfonline.com/doi/full/10.1080/15405702.2017.1343948. Acesso em: 5 abr. 2023.

CARLAN DA SILVEIRA, S.; IUVA, P. Tecnoestética algorítmica e hibridismos audiovisuais nos trailers da Netflix. Comunicação & Informação, v. 23, p. 1-18, 30 dez. 2020. Disponível em: https://www.revistas.ufg.br/ci/article/view/66235. Acesso em: 5 abr. 2022.

COHN, J. The Burden of choice: recommendations, subversion, and algorithmic culture. New Brunswick: Rutgers University Press, 2019.

CURTIN, M.; HOLT, J.; SANSON, K. Distribution Revolution: Conversations about the Digital Future of Film and Television. Los Angeles: University of California Press, 2014.

FERNÁNDEZ-MANZANO, E.-P.; NEIRA, E.; CLARES-GAVILÁN, J. Data management in audiovisual business: Netflix as a case study. El Profesional de la Información, v. 25, n. 4, p. 568, 2016. Disponível em: <https://revista.profesionaldelainformacion.com/index.php/EPI/article/view/epi.2016.jul.06>. Acesso em: 10/11/2022

GAW, F. Algorithmic logics and the construction of cultural taste of the Netflix Recommender System. Media, Culture & Society, v. 44, n. 4, p. 706-725, 25 mai. 2022. Disponível em: http://journals.sagepub.com/doi/10.1177/01634437211053767. Acesso em: 5 mar. 2023.

GIL, A. C. Métodos e técnicas de pesquisa social. 6 ed. São Paulo: Atlas, 2008.

GILLESPIE, T. The Relevance of Algorithms. In: GILLESPIE, T.; BOCZKOWSKI, P. J.; FOOT, K. A. (Org.). Media Technologies: Essays on Communication, Materiality, and Society. Cambridge, MA: MIT Press, 2014. p. 167-194.

GILLESPIE, T. A relevância dos algoritmos (tradução). Parágrafo, v. 6, n. 1, p. 95-121, 2018. Disponível em: http://revistaseletronicas.fiamfaam.br/index.php/recicofi/article/view/722. Acesso em: 1 fev. 2022.

GOFFEY, A. Algorithm. In: FULLER, M. (Org.). Software Studies: a lexicon. Cambridge, MA: MIT Press, 2008. p. 15-20.

GOLDBERG, D. et al. Using collaborative filtering to weave an information tapestry. Communications of the ACM, v. 35, n. 12, p. 61-70, dez. 1992. Disponível em: https://dl.acm.org/doi/10.1145/138859.138867. Acesso em: 1 fev. 2022.

GOMEZ-URIBE, C. A.; HUNT, N. The Netflix Recommender System. ACM Transactions on Management Information Systems, v. 6, n. 4, p. 1-19, 14 jan. 2016. Disponível em: https://dl.acm.org/doi/10.1145/2843948. Acesso em: 10 fev. 2022.

HALLINAN, B.; STRIPHAS, T. Recommended for you: The Netflix Prize and the production of algorithmic culture. New Media & Society, v. 18, n. 1, p. 117-137, 23 jan. 2016. Disponível em: http://journals.sagepub.com/doi/10.1177/1461444814538646. Acesso em: 3 mar. 2023.

JENNER, M. Is this TVIV? On Netflix, TVIII and binge-watching. New Media & Society, v. 18, n. 2, p. 257-273, 7 fev. 2016. Disponível em: http://journals.sagepub.com/doi/10.1177/1461444814541523. Acesso em: 1 fev. 2022.

LATOUR, B. Ciência em ação: como seguir cientistas e engenheiros sociedade afora. São Paulo: Editora UNESP, 2000.

LOZIC, J. Financial Analysis of Netflix Platform At the Time of Covid 19 Pandemic. In: HAMMES, K.; VOLAREVIC, H.; KAUROVA, O. (Eds.). 66th International Scientific Conference on Economic and Social Development. Book of Proceedings. Rabat: Varazdin Development and Entrepreneurship Agency, 2021. p. 78-86. Disponível em: https://www.bib.irb.hr/1118937. Acesso em: 5 abr. 2023.

MOROZOV, E. Big tech: a ascenção dos dados e a morte da política. São Paulo: Ubu Editora, 2018.

MORRIS, J. W. Curation by code: Infomediaries and the data mining of taste. European Journal of Cultural Studies, v. 18, n. 4-5, p. 446-463, 16 ago. 2015. Disponível em: http://journals.sagepub.com/doi/10.1177/1367549415577387. Acesso em: 10 mai. 2022.

NETFLIX. Como funciona o sistema de recomendações da Netflix. Netflix - Central de Ajuda, [2019?]. Disponível em: https://help.netflix.com/pt/node/100639. Acesso em: 10 mai. 2022.

NETFLIX. About Netflix - Página inicial. Disponível em: https://about.netflix.com/pt_br. Acesso em: 10 mai. 2022.

O’NEIL, C. Weapons of math destruction: how big data increases inequality and threatens democracy. New York: Broadway Books, 2016.

PAJKOVIC, N. Algorithms and taste-making: Exposing the Netflix Recommender System’s operational logics. Convergence: The International Journal of Research into New Media Technologies, v. 28, n. 1, p. 214-235, 17 fev. 2022. Disponível em: http://journals.sagepub.com/doi/10.1177/13548565211014464. Acesso em: 10 mai. 2022.

PARISER, E. O filtro invisível: o que a internet está escondendo de você. Rio de Janeiro: Zahar, 2012.

PASQUALE, F. The Black Box Society: The Secret Algorithms That Control Money and Information. Cambridge, MA: Havard University Press, 2016.

PINCH, T. J.; BIJKER, W. E. The Social Construction of Facts and Artefacts: or How the Sociology of Science and the Sociology of Technology might Benefit Each Other. Social Studies of Science, v. 14, n. 3, p. 399-441, 29 ago. 1984. Disponível em: http://journals.sagepub.com/doi/10.1177/030631284014003004. Acesso em: 12 nov. 2021.

RITTER, O. I Know What You Saw Last Summer: Uma Análise do Uso de Dados Pessoais pela Plataforma Netflix. In: BELLI, L.; RAMOS, B. (Org.). Políticas Digitais no Brasil: Acesso à Internet, Proteção de Dados e Regulação. Rio de Janeiro: FGV Direito Rio, 2021. p. 158-172. Disponível em: https://bibliotecadigital.fgv.br/dspace/bitstream/handle/10438/30688/0. Acesso em: 10 mai. 2022.

SEAVER, N. Algorithms as culture: Some tactics for the ethnography of algorithmic systems. Big Data & Society, v. 4, n. 2, p. 1-12, 9 dez. 2017. Disponível em: http://journals.sagepub.com/doi/10.1177/2053951717738104>. Acesso em: 5 abr. 2023.

SIMÕES, A. L.; CUNHA, M. DO N. Comunicação na Internet e a Violação do Direito à Privacidade: uma análise avaliativa das políticas e termos de uso na Internet. Comunicação & Inovação, v. 19, n. 40, p. 39-55, 25 ago. 2018. Disponível em: http://seer.uscs.edu.br/index.php/revista_comunicacao_inovacao/article/view/5093. Acesso em: 3 mar. 2022.

SRNICEK, N. Plataform Capitalism. Cambridge, UK: Policy Press, 2016.

SUMPTER, D. Dominados pelos números: do Facebook e Google às Fake News - os algoritmos que controlam nossa vida. Rio de Janeiro: Bertrand Brasil, 2019.

TALIB, S. et al. Perception analysis of social networks’ privacy policy: Instagram as a case study. In: The 5th International Conference on Information and Communication Technology for The Muslim World (ICT4M), 5., nov. 2014 Kuching, Malaysia. Rabat-Morocco: IEEE, nov. 2014. p. 1–5. Disponível em: http://ieeexplore.ieee.org/document/7020612/. Acesso em: 1 fev. 2022.

TIKU, N. Why Netflix Features Black Actors in Promos to Black Users. Wired, 24 out. 2018 20:20. Culture. Disponível em: https://www.wired.com/story/why-netflix-features-black-actors-promos-to-black-users/. Acesso em: 10 mai. 2022.

WILSON, S. et al. The Creation and Analysis of a Website Privacy Policy Corpus. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Berlim: Association for Computational Linguistics, 2016. p. 1330-1340. Disponível em: http://aclweb.org/anthology/P16-1126. Acesso em: 5 fev. 2022.

WINKLER, S.; ZEADALLY, S. Privacy Policy Analysis of Popular Web Platforms. IEEE Technology and Society Magazine, v. 35, n. 2, p. 75-85, jun. 2016. Disponível em: http://ieeexplore.ieee.org/document/7484849/. Acesso em: 3 fev. 2022.

ZUBOFF, S. A era do capitalismo de vigilância. Rio de Janeiro: Intríseca, 2020.

Published

2024-01-13

Issue

Section

General articles